A Stepwise Spatio-Temporal Flow Clustering Method for Discovering Mobility Trends

Abstract

Massive flows that represent the individual level of movements and communications can be easily obtained in the age of big data. Generalizing spatial and temporal flow patterns from such data is essential to demonstrate spatial connections and mobility trends. Clustering approaches provide effective methods to handle data sets that contain massive individual-level flows. However, existing flow clustering studies obscure the geometric properties of flow data, such as direction and length, which significantly indicate movement trends. In addition, temporal information is often ignored because previous approaches have mainly focused on the perspective of spatial clusters of flow data, resulting in a loss of temporal patterns. In this paper, we introduce new spatial and temporal similarity measurements between flows and propose a new clustering approach of flow data based on a stepwise strategy. This method can identify clusters from distinct flow distributions and discover significant spatio-temporal trends from large flow data. Simulated experiments with synthetic flows and a case study using Beijing taxi trip data are conducted to validate the usefulness of the proposed method.

Publication
IEEE Access
Di Zhu
Di Zhu
Professors

I am an Assistant Professor of Geographic Information Science in the Department of Geography, Environment, and Society at the University of Minnesota, Twin Cities. My research interests center around Geospatial Artificial Intelligence (GeoAI), Spatial Analytics, Social Sensing, and Urban Complexities.

Yong Gao
Yong Gao
Associate professor

Professor of GIScience

Lun Wu
Lun Wu
Professor
Yu Liu
Yu Liu
Professor
1997 - present

Professor of GIScience

Related