Social Sensing from Street-Level Imagery: A Case Study in Learning Spatio-Temporal Urban Mobility Patterns

Abstract

Street-level imagery has covered the comprehensive landscape of urban areas. Compared to satellite imagery, this new source of image data has the advantage in fine-grained observations of not only physical environment but also social sensing. Prior studies using street-level imagery focus primarily on urban physical environment auditing. In this study, we demonstrate the potential usage of street-level imagery in uncovering spatio-temporal urban mobility patterns. Our method assumes that the streetscape depicted in street-level imagery reflects urban functions and that urban streets of similar functions exhibit similar temporal mobility patterns. We present how a deep convolutional neural network (DCNN) can be trained to identify high-level scene features from street view images that can explain up to 66.5% of the hourly variation of taxi trips along with the urban road network. The study shows that street-level imagery, as the counterpart of remote sensing imagery, provides an opportunity to infer fine-scale human activity information of an urban region and bridge gaps between the physical space and human space. This approach can therefore facilitate urban environment observation and smart urban planning.

Publication
ISPRS Journal of Photogrammetry and Remote Sensing
Fan Zhang
Fan Zhang
Assistant professor
Lun Wu
Lun Wu
Professor
Di Zhu
Di Zhu
Professors

I am an Assistant Professor of Geographic Information Science in the Department of Geography, Environment, and Society at the University of Minnesota, Twin Cities. My research interests center around Geospatial Artificial Intelligence (GeoAI), Spatial Analytics, Social Sensing, and Urban Complexities.

Yu Liu
Yu Liu
Professor
1997 - present

Professor of GIScience

Related