Spatial Interpolation Using Conditional Generative Adversarial Neural Networks

Abstract

Spatial interpolation is a traditional geostatistical operation that aims at predicting the attribute values of unobserved locations given a sample of data defined on point supports. However, the continuity and heterogeneity underlying spatial data are too complex to be approximated by classic statistical models. Deep learning models, especially the idea of conditional generative adversarial networks (CGANs), provide us with a perspective for formalizing spatial interpolation as a conditional generative task. In this article, we design a novel deep learning architecture named conditional encoder-decoder generative adversarial neural networks (CEDGANs) for spatial interpolation, therein combining the encoder-decoder structure with adversarial learning to capture deep representations of sampled spatial data and their interactions with local structural patterns. A case study on elevations in China demonstrates the ability of our model to achieve outstanding interpolation results compared to benchmark methods. Further experiments uncover the learned spatial knowledge in the model’s hidden layers and test the potential to generalize our adversarial interpolation idea across domains. This work is an endeavor to investigate deep spatial knowledge using artificial intelligence. The proposed model can benefit practical scenarios and enlighten future research in various geographical applications related to spatial prediction.

Publication
International Journal of Geographical Information Science
Di Zhu
Di Zhu
Professors

I am an Assistant Professor of Geographic Information Science in the Department of Geography, Environment, and Society at the University of Minnesota, Twin Cities. My research interests center around Geospatial Artificial Intelligence (GeoAI), Spatial Analytics, Social Sensing, and Urban Complexities.

Ximeng Cheng
Ximeng Cheng
Postdoctoral Researcher

My main research interests are spatial-temporal big data mining, explainable artificial intelligence (XAI), GeoAI, time series analysis, and social sensing.

Fan Zhang
Fan Zhang
Assistant professor
Yong Gao
Yong Gao
Associate professor

Professor of GIScience

Yu Liu
Yu Liu
Professor
1997 - present

Professor of GIScience

Related