A Framework for Mixed-Use Decomposition Based on Temporal Activity Signatures Extracted from Big Geo-Data

Abstract

Mixed use has been extensively applied as an urban planning principle and hinders the study of single urban functions. To address this problem, it is worth decomposing the mixed use. Inspired by the concept of spectral unmixing in remote sensing applications, this paper proposes a framework for mixed-use decomposition based on big geo-data. Mixed-use decomposition in terms of human activities differs from traditional land use research, and it is more reasonable to infer the actual urban function of land. The framework consists of four steps, namely temporal activity signature extraction, urban function base curve extraction, mixed-use decomposition, and result validation. First, the temporal activity signatures (TASs) of each zone are extracted as the proxy of human activity patterns. Second, the diurnal TASs of routine activities are extracted as urban function base curves (i.e. endmembers). Third, a linear decomposition model is used to decompose the mixed use and obtain multiple results (urban function composition, dynamic activity proportions, and the mixing index). Finally, result validation strategies are concluded. This framework offers method extensibility and has few requirements for the input data. It is validated by means of a case study of Beijing, based on a social media check-in dataset.

Publication
International Journal of Digital Earth
Lun Wu
Lun Wu
Professor
Ximeng Cheng
Ximeng Cheng
Postdoctoral Researcher

My main research interests are spatial-temporal big data mining, explainable artificial intelligence (XAI), GeoAI, time series analysis, and social sensing.

Chaogui Kang
Chaogui Kang
Professor of GIScience

Professor of GIScience, China University of Geosciences

Di Zhu
Di Zhu
Professors

I am an Assistant Professor of Geographic Information Science in the Department of Geography, Environment, and Society at the University of Minnesota, Twin Cities. My research interests center around Geospatial Artificial Intelligence (GeoAI), Spatial Analytics, Social Sensing, and Urban Complexities.

Zhou Huang
Zhou Huang
Associate professor

Associate professor of GIScience

Yu Liu
Yu Liu
Professor
1997 - present

Professor of GIScience

Related