Inferring Spatial Interaction Patterns from Sequential Snapshots of Spatial Distributions

Abstract

Spatial interactions underlying consecutive sequential snapshots of spatial distributions, such as the migration flows underlying temporal population snapshots, can reflect the details of spatial evolution processes. In the era of big data, we have access to individual-level data, but the acquisition of high-quality spatial interaction data remains a challenging problem. Most research has been focused on distributions of movable objects or the modelling of spatial interaction patterns, with few attempts to identify hidden spatial interaction patterns from temporal transitions of spatial distributions. In this article, we introduced an approach to infer spatial interaction patterns from sequential snapshots of spatial population distributions by incorporating linear programming and the spatial constraints of human movement. Experiments using synthetic data were conducted using four simple scenarios to explore the characteristics of our method. The proposed method was used to extract interurban flows of migrants during the Chinese Spring Festival in 2016. Our research demonstrated the feasibility of using discrete multi-temporal snapshots of population distributions in space to infer spatial interaction patterns and offered a general analytical framework from snapshot data to spatial interaction patterns.

Publication
International Journal of Geographical Information Science
Di Zhu
Di Zhu
Professors

I am an Assistant Professor of Geographic Information Science in the Department of Geography, Environment, and Society at the University of Minnesota, Twin Cities. My research interests center around Geospatial Artificial Intelligence (GeoAI), Spatial Analytics, Social Sensing, and Urban Complexities.

Zhou Huang
Zhou Huang
Associate professor

Associate professor of GIScience

Lun Wu
Lun Wu
Professor
Yu Liu
Yu Liu
Professor
1997 - present

Professor of GIScience

Related